On the restricted mean value property

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the mean value property of superharmonic and subharmonic functions

Recall that a function u is harmonic (superharmonic, subharmonic) in an open set U ⊂ Rn (n ≥ 1) if u ∈ C2(U) and Δu = 0 (Δu ≤ 0,Δu ≥ 0) on U . Denote by H(U) the space of harmonic functions in U and SH(U) (sH(U)) the subset of C2(U) consisting of superharmonic (subharmonic) functions in U . If A ⊂ Rn is Lebesgue measurable, L1(A) denotes the space of Lebesgue integrable functions on A and |A| d...

متن کامل

Harmonic functions via restricted mean-value theorems

Let f be a function on a bounded domain Ω ⊆ R and δ be a positive function on Ω such that B(x, δ(x)) ⊆ Ω. Let σ(f)(x) be the average of f over the ball B(x, δ(x)). The restricted mean-value theorems discuss the conditions on f, δ, and Ω under which σ(f) = f implies that f is harmonic. In this paper, we study the stability of harmonic functions with respect to the map σ. One expects that, in gen...

متن کامل

Invariant Mean Value Property and Harmonic Functions

We give conditions on the functions σ and u on R such that if u is given by the convolution of σ and u, then u is harmonic on R.

متن کامل

On Polynomials Characterized by a Certain Mean Value Property

for xER, 0<t<ex (R denotes an «-dimensionaI region; x and yt are abbreviations for (xi, • • • , x„), (yn, • • • , ytn))We assume that the y<'s span £„ so that I^m^JV. We furthermore assume, without loss of generality, that yi, • • • , y« are linearly independent. Friedman and Littman [5] have recently shown that V consists of polynomials of degrees ^N(N—l)/2. This bound is actually attained whe...

متن کامل

Mean-value property on manifolds with minimal horospheres

Let (M, g) be a non-compact and complete Riemannian manifold with minimal horospheres and infinite injectivity radius. We prove that bounded functions on (M, g) satisfying the mean-value property are constant. We extend thus a result of the authors in [6] where they proved a similar result for bounded harmonic functions on harmonic manifolds with minimal horospheres. MSC 2000: 53C21 , 53C25.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1987

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1987-0891149-1